Skip to main content
Log in

“Calc-alkaline” magmatism of the Omgon Range: Evidence for Early Paleogene extension in the western Kamchatka segment of the Eurasian continental margin

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The hypabyssal rocks of the Omgon Range, western Kamchatka, that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5–63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. The Early Paleocene age of the ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. The ilmenite and titanomagnetite gabbro-dolerites were produced by the multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and the contamination of these melts with rhyolitic melts of different compositions. The moderate-and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. The biotite granites and granite aplites were produced by the combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. The Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from the Late Cretaceous throughout the Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil’) continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors for the rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Anderson and D. H. Lindsley, “New (and Final!) Models for the Ti-Magnetite/Ilmenite Geothermometer and Oxygen Barometer,” EOS Transis. 66, 416 (1985).

    Google Scholar 

  2. N. A. Bogdanov and V. D. Chekhovich, “On the Collision between the West Kamchatka and Sea of Okhotsk Plates,” Geotektonika, No. 1, 72–85 (2002) [Geotectonics 36 (1), 63–75 (2002)].

  3. N. A. Bogdanov, “Tectonic Evolution of the Region,” in Explanatory Notes. Tectonic Map of the Sea of Okhotsk Region. Scale 1: 2500000, Ed. by N. A. Bogdanov and V. E. Khain (Inst. Litosf. Okrain. Vnutr. Morei, Ross. Akad. Nauk, Moscow, 2000), pp. 163–173 [142–151 (2000)].

    Google Scholar 

  4. N. A. Bogdanov, A. V. Solov’ev, G. V. Ledneva, et al., “The Structure of the Cretaceous Accretionary Prism in the Omgon Range, West Kamchatka,” Geotektonika, No. 4, 64–76 (2003) [Geotectonics 37, 316–327 (2003)].

  5. N. A. Bogdanov, G. E. Bondarenko, V. S. Vishnevskaya, and I. N. Izvekov, “Middle-Upper Jurassic and Lower Cretaceous Radiolarian Complexes of the Omgon Range, West Kamchatka,” Dokl. Akad. Nauk SSSR 321(2), 344–348 (1991).

    Google Scholar 

  6. G. E. Bondarenko and V. A. Sokolkov, “New Data on the Age, Structure, and Formation Conditions of the Omgon Volcanic-Siliceous-Carbonate Complex, West Kamchatka” Dokl. Akad. Nauk 315(6), 1434–1437 (1990).

    Google Scholar 

  7. M. T. Brandon and J. A. Vance, “Tectonic Evolution of the Cenozoic Olympic Subduction Complex, Western Washington State, as Deduced from Fission-Track Ages for Detrital Zircon,” Am. J. Sci. 292, 565–636 (1992).

    Google Scholar 

  8. B. Cabanis and M. Lecolle, “Le Diagramme La/10-Y/15-Nb/8: Un Outil Pour la Discrimination des Series Volcaniques et la Mues en Evidence des Processus de Mélange et/ou de Contamination Crustale,” C.R. Acad. Sci., Ser. II 309, 2023–2029 (1989).

    Google Scholar 

  9. V. E. Camp, M. E. Ross, and W. E. Hanson, “Genesis of Flood Basalts and Basin and Range Volcanic Rocks from the Steens Mountain to the Malheur River Gorge, Oregon,” GSA Bull. 115, 101–128 (2003).

    Google Scholar 

  10. B. W. Chappel and A. J. R. White, “Two Contrasting Granite Types,” Pacif. Geol. 8, 173–174 (1974).

    Google Scholar 

  11. V. D. Chekhovich, N. A. Bogdanov, I. R. Kravchenko-Berezhnoi, et al., The Geology of West Bering Sea Area (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  12. E. E. Chernov and D. V. Kovalenko, “Paleomagnetism of Geological Complexes in the Omgon Range, West Kamchatka,” Fiz. Zemli, No. 4, 1–10 (2001).

  13. Explanatory Notes to a Geological Map of the USSR 1:1000000, New Series, Page O-57: Palana (VSEGEI, Leningrad, 1989) [in Russian].

  14. K. C. Condie, “Greenstone Through Time,” in Archean Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1994), pp. 85–120.

    Google Scholar 

  15. K. C. Condie, Mantle Plumes and Their Record in Earth History (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  16. D. J. DePaolo and G. J. Wasserburg, “Inference about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd,” Geophys. Rev. Lett. 3, 743–746 (1976).

    Google Scholar 

  17. D. J. DePaolo, “Trace Elements and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization,” Earth Planet. Sci. Lett. 53, 189–202 (1981).

    Article  Google Scholar 

  18. A. Ewart, R. W. Schon, and B. W. Chappell, “The Cretaceous Volcanic-Plutonic Province of the Central Queensland (Australia) Coast: A Rift Related ‘Calc-Alkaline’ Province,” Trans. R. Soc. Edinburgh, Earth Sci. 83, 327–345 (1992).

    Google Scholar 

  19. C. M. Falkner, C. F. Miller, J. L. Wooden, and M. T. Heizler, “Petrogenesis and Tectonic Significance of the Calc-Alkaline, Bimodal Aztec Wash Pluton, Eldorado Mountains, Colorado River Extension Corridor,” J. Geophys. Res. 100, 10453–10476 (1995).

    Article  Google Scholar 

  20. P. I. Fedorov and N. I. Filatova, “Geochemistry and Petrology of Late Cretaceous and Cenozoic Basalts from Extensional Zones at the Continental Margin of Northeastern Asia,” Geokhimiya, No. 2, 1–16 (1999) [Geochem. Int. 37 (2), 91–107 (1999)].

  21. N. I. Filatova, Perioceanic Volcanic Belts (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  22. N. I. Filatova, “Extension Zones of Continental Margins,” in Explanatory Notes. Tectonic Map of the Sea of Okhotsk Region. Scale 1: 2500000, Ed. by N. A. Bogdanov and V. E. Khain (Inst. Litosf. Okrain. Vnutr. Morei, Ross. Akad. Nauk, Moscow, 2000), pp. 46–48 [40 (2000)].

    Google Scholar 

  23. M. S. Ghiorso and I. S. E. Carmichael, “Chemical Mass Transfer in Magmatic Processes: II. Applications in Equilibrium Crystallization, Fractionation, and Assimilation,” Contrib. Mineral. Petrol. 90, 121–141 (1985).

    Google Scholar 

  24. Yu. B. Gladenkov, A. E. Shantser, A. I. Chelebaeva, V. N. Sinel’nikova, M. P. Antipov, V. N. Ben’yamovskii, M. G. Brattseva, B. P. Polyanskii, S. I. Stupin, and P. I. Fedorov, The Lower Paleogene of Kamchatka (GEOS, Moscow, 1997) [in Russian].

    Google Scholar 

  25. A. E. Goldyrev, “New Data on the Composition of Upper Cretaceous and Eocene-Oligocene Terrigenous Sequences in West Kamchatka, the Area of Moroshechnaya Mountain Range,” in Problems of Modern Geotectonics, Ed. by N. A. Bogdanov, V. M. Moralev, and V. E. Verzhbitskii (Nauchnyi Mir, Moscow, 2001), pp. 136–138 [in Russian].

    Google Scholar 

  26. G. G. Goles, “Miocene Basalts of the Blue Mountains Province in Oregon: I. Compositional Types and Their Geological Settings,” J. Petrol. 27 (Part 2), 495–520 (1986).

    Google Scholar 

  27. M. P. Gorton and E. S. Schandl, “From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks,” Am. Mineral. 38, 1065–1073 (2000).

    Google Scholar 

  28. C. Guivel, Y. Lagabrielle, J. Bourgois, et al., “New Geochemical Constraints for the Origin of the Ridge-Subduction-Related Plutonic and Volcanic Suites from the Chile Triple Junction (Taitao Peninsula and Site 862, LEG ODP 141 on the Taitao Ridge),” J. South Am. Earth Sci. 311, 83–111 (1999).

    Google Scholar 

  29. C. Hawkesworth, S. Turner, K. Gallagher, et al., “Calc-Alkaline Magmatism, Lithospheric Thinning, and Extension in the Basin and Range,” J. Geophys. Res. 100, 10271–10286 (1995).

    Article  Google Scholar 

  30. A. W. Hofmann, “Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust,” Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  Google Scholar 

  31. A. W. Hofmann, “Nb in Hawaiian Magmas: Constraints on Source Composition and Evolution,” Chem. Geol. 57, 17–30 (1986).

    Article  Google Scholar 

  32. P. R. Hooper, D. G. Bailey, and G. A. McCarley Holder, “Tertiary Calc-Alkaline Magmatism Associated with Lithospheric Extension in the Pacific Northwest,” J. Geophys. Res. 100, 10303–10319 (1995).

    Article  Google Scholar 

  33. P. R. Hooper, G. B. Binger, and K. R. Lees, “Age of the Steens and Columbia River Flood Basalts and Their Relationship to Extension-Related Calc-Alkaline Volcanism in Eastern Oregon,” GSA Bull. 114, 43–50 (2002).

    Google Scholar 

  34. J. H. Hourigan, PhD Thesis (Stanford Univ., 2003).

  35. A. G. Hunter, “Intracrustal Controls on the Coexisting Tholeiitic and Calc-Alkaline Magma Series at Aso Volcano, SW Japan,” J. Petrol. 39, 1255–1284 (1998).

    Article  Google Scholar 

  36. A. J. Hurford, “Zeta: The Ultimate Solution to Fission-Track Analysis Calibration or Just an Interim Measure?,” in Advances in Fission-Track Geochronology (Kluwer Academic, Boston, 1998), 19–32.

    Google Scholar 

  37. J. A. Johnson and A. L. Grunder, “The Making of Intermediate Composition Magma in a Bimodal Suite: Duck Butte Eruptive Center, Oregon, USA,” J. Volcanol. Geotherm. Res. 95, 175–195 (2000).

    Article  Google Scholar 

  38. V. E. Khain and M. G. Lomize, Geotectonics on a Geodynamic Basis (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  39. A. I. Khanchuk, The Evolution of Ancient Sialic Crust of Island Arc Systems of Eastern Asia (Dal’nevost. Nauchn. Tsentr, Akad. Nauk SSSR, Vladivostok, 1985) [in Russian].

    Google Scholar 

  40. E. A. Konstantinovskaya, “Geodynamics of Island Arc-Continent Collision in the Western Pacific Margin,” Geotektonika, No. 5, 15–34 (1999) [Geotectonics 33 (5), 353–370 (1999)].

  41. E. A. Konstantinovskaya, “Arc-Continent Collision and Subduction Reversal in the Cenozoic Evolution of the Northwest Pacific: An Example from Kamchatka (NE Russia),” in Active Subduction and Collision in Southeast Asia (SEASIA), Ed. by S. Lallemand, C.-S. Liu, J. Angelier, and Y. B. Tsai (Elsevier, Amsterdam, 2001), pp. 75–94.

    Google Scholar 

  42. E. A. Konstantinovskaya, Tectonics of East Asian Margins: Structural Development and Geodynamic Modeling (Nauchnyi Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  43. D. V. Kovalenko, Paleomagnetism of Geological Complexes in Kamchatka and Southern Koryak Area: Tectonic and Geophysical Interpretations (Nauchnyi Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  44. D. V. Kovalenko, G. V. Ledneva, V. S. Vishnevskaya, T. B. Bayanova, et al., “Lithotectonic Complexes and Tectonic Evolution of the Palana Island Arc, Western Kamchatka,” Geotektonika, No. 6, 68–90 [Geotectonics 39 (6), 480–499 (2005)].

  45. D. V. Kurilov, “New Finds of Jurassic-Cretaceous Radiolarians in West Kamchatka,” in Studies of the Lithosphere, Ed. by V. M. Moralev (Inst. Litosf. Okrain. Vnutr. Morei, Ross. Akad. Nauk, Moscow, 2000), pp. 40–42 [in Russian].

    Google Scholar 

  46. A. B. Kuz’michev and N. A. Sukhov, “Cretaceous Deposits in the Island Arc Zone of Ust’-Palana Neighborhoods, West Kamchatka: Lithologic Column and Geodynamic Speculations,” in Studies of the Lithosphere, Ed. by V. M. Moralev (Inst. Litosf. Okrain. Vnutr. Morei, Ross. Akad. Nauk, Moscow, 2000), pp. 33–36 [in Russian].

    Google Scholar 

  47. G. M. Laslett, P. F. Green, I. R. Duddy, and A. J. W. Gleadow, “Thermal Annealing of Fission Track in Apatite,” Chem. Geol. 65, 1–13 (1987).

    Article  Google Scholar 

  48. R. W. LeMaitre, P. Bateman, and A. Dudek, A Classification of Igneous Rocks and Glossary of Terms (Blackwell, Oxford, 1989).

    Google Scholar 

  49. G. V. Ledneva, “Petrology and Geochemistry of Upper Cretaceous Magmatic Complexes in Western Kamchatka,” in Geology, Geochemistry, and Geophysics at the Boundary between the 20th and 21st Centuries, Vol. 2: Petrology, Geochemistry, Mineralogy, Geology of Ore Deposits, and Geoecology (Svyaz’ print, Moscow, 2002), pp. 131–133 [in Russian].

    Google Scholar 

  50. D. H. Lindsley, “Pyroxene Thermometry,” Am. Mineral. 68, 477–493 (1983).

    Google Scholar 

  51. A. Miyashiro, “Volcanic Rock Series in Island Arcs and Active Continental Margins,” Am. J. Sci. 274, 321–343 (1974).

    Google Scholar 

  52. G. A. Morris, P. B. Larson, and P. R. Hooper, “Subduction Style’ Magmatism in Non-Subduction Setting: The Colvill Igneous Complex, NE Washington State, USA,” J. Petrol. 41, 43–67 (2000).

    Article  Google Scholar 

  53. Y. Nakamura and I. Kushiro, “Equilibrium Relations of Hypersthene, Pigeonite, and Augite in Crystallizing Magmas: Microprobe Study of Pigeonite Andesite from Weiselberg, Germany,” Am. Mineral. 55, 1999–2015 (1970).

    Google Scholar 

  54. P. Nimis, “A Clinopyroxene Geobarometer for Basaltic Systems Based on Crystal-Structure Modeling,” Contrib. Mineral. Petrol. 121, 115–125 (1995).

    Article  Google Scholar 

  55. M. D’Orazio, F. Innocenti, P. Manetti, et al., “The Quaternary Calc-Alkaline Volcanism of the Patagonian Andes Close to the Chile Triple Junction: Geochemistry and Petrogenesis of Volcanic Rocks from the Cay and Maca Volcanoes (∼45°S, Chile),” South Am. Earth Sci. 16, 219–242 (2003).

    Google Scholar 

  56. S. A. Palandzhyan, “The Western Koryak Belt of Dike and Hypabyssal Rocks as an Indicator of Extension and Destruction of the Fore-Arc of the Okhotsk-Chukot Volcanic Belt in the Late Senonian-Paleocene,” Dokl. Akad. Nauk 385(6), 800–804 (2002) [Dokl. Earth Sci. 385A (6), 651–655 (2002)].

    Google Scholar 

  57. T. N. Palechek, A. V. Solov’ev, and M. N. Shapiro, “Structure and Age of Mesozoic Sedimentary-Volcanogenic Deposits of the Palana Section (Western Kamchatka),” Stratigr. Geol. Korrelyatsiya 11(3), 74–91 (2003) [Stratigr. Geol. Correlation 11 (3), 261–277 (2003)].

    Google Scholar 

  58. T. N. Palechek, E. Yu. Baraboshkin, A. V. Solov’ev, et al., “A New Data on Structure and Age of Mesozoic and Cenozoic Deposits of Khairuzova Cape,” in Western Kamchatka: Mesozoic Geological Evolution, Ed. by Yu.B. Gladenkov and S.A. Palandzhyan (Nauchnyi Mir, Moscow, 2005), pp. 77–91 [in Russian].

    Google Scholar 

  59. L. M. Parfenov and B. A. Natal’in, “Mesozoic-Cenozoic Tectonic Evolution of Northeast Asia,” Dokl. Akad. Nauk SSSR 235(2), 89–91 (1977).

    Google Scholar 

  60. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” J. Petrol. 25, 956–983 (1984).

    Google Scholar 

  61. T. L. Robyn, “Miocene Volcanism in Eastern Oregon: An Example of Calc-Alkaline Volcanism Unrelated to Subduction,” J. Volcanol. Geotherm. Res 5, 149–161 (1979).

    Article  Google Scholar 

  62. H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Essex, London, 1994).

    Google Scholar 

  63. N. I. Seliverstov, The Bottom Structure in near-Kamchatka Water Areas and the Geodynamics of the Junction Zone of the Kuril-Kamchatka and Aleutian Island Arcs (Nauchnyi Mir, Moscow, 1998) [in Russian].

    Google Scholar 

  64. A. E. Shantser and P. I. Fedorov, “Early Paleogene Volcanism,” in The Lower Paleogene of West Kamchatka: Stratigraphy, Paleontology, and Geological Events, Ed. by Yu. B. Gladenkov (GEOS, Moscow, 1997), pp. 117–128 [in Russian].

    Google Scholar 

  65. M. N. Shapiro, “The Late Cretaceous Achaivayam-Valaginsky Volcanic Arc, Kamchatka, and the Plate Kinematics of North Pacific Zone,” Geotektonika, No. 1, 58–70 (1995).

  66. M. N. Shapiro, A. V. Solov’ev, G. I. Garver, and M. T. Brandon, “Sources of Zircons from Cretaceous and Lower Paleogene Terrigenous Sequences of the Southern Koryak Upland and Western Kamchatka,” Litol. Polezn. Iskop., No. 4, 374–389 (2001) [Lithol. Miner. Resour. 36 (4), 322–336 (2001)].

  67. G. P. Singaevskii and D. A. Babushkin, Geological Map of the USSR, West Kamchatka, Pages O-57-XX and XIX (VSEGEI, Leningrad, 1965) [in Russian].

    Google Scholar 

  68. B. I. Slyadnev, V. A. Sokolkov, and B. A. Markovskii, “Baraba Conglomerates, Kamchatka: Structure, Composition, and the Problem of Origin,” Tikhookean. Geol. 16(1), 83–88 (1997).

    Google Scholar 

  69. I. E. M. Smith and J. S. Milsom, “Late Cenozoic Volcanism and Extension in Eastern Papua,” in Marginal Basin Geology, Ed. by M. Kokelaar and K. Howells, Geol. Soc. Spec. Publ. 16, 163–171 (1984).

  70. I. E. M. Smith, “Peralkaline Rhyolites from the D’Entrecasteaux Islands, Papua New Guinea,” in Volcanism in Australia, Ed. by R. W. Johnson (Elsevier, New York, 1976), pp. 275–286.

    Google Scholar 

  71. A. V. Solov’ev, “Tectonics of Western Kamchatka: Constraints from Fission-Track and Structural Data,” in Western Kamchatka: Mesozoic Geological Evolution, Ed. by Yu. B. Gladenkov and S. A. Palandzhyan (Nauchnyi Mir, Moscow, 2005), 163–194 [in Russian].

    Google Scholar 

  72. A. V. Soloviev, J. I. Garver, and G. V. Ledneva, J. Asian Earth Sci. (in press).

  73. A. N. Sukhov and A. B. Kuz’michev, “Upper Cretaceous Deposits of Western Kamchatka,” in Western Kamchatka: Mesozoic Geological Evolution, Ed. by Yu. B. Gladenkov and S. A. Palandzhyan (Nauchnyi Mir, Moscow, 2005), 121–162 [in Russian].

    Google Scholar 

  74. S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes,” in Magmatism in Oceanic Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  75. Tectonic Map of the Sea of Okhotsk Region 1:2500000, Ed. by N. A. Bogdanov and V. E. Khain (Kom. Geod. Kartogr. Ross. Feder., Moscow, 2000) [in Russian].

    Google Scholar 

  76. Tectonic Map of Northeast Asia 1: 5000000, Ed. by S. M. Tilman and N. A. Bogdanov (Kom. Geod. Kartogr. Ross. Feder., Moscow, 1992) [in Russian].

    Google Scholar 

  77. D. Turcotte and G. Schubert, Geodynamics Applications of Continuum Physics to Geological Problems (Wiley, New York, 1982; Mir, Moscow, 1985).

    Google Scholar 

  78. V. S. Vishnevskaya, I. A. Basov, T. N. Palechek, and D. V. Kurilov, “Radiolarians and Biostratigraphy of the Jurassic-Cretaceous Deposits of Western Kamchatka by Radiolarians and Foraminiferas,” in Western Kamchatka: Mesozoic Geological Evolution, Ed. by Yu. B. Gladenkov and S. A. Palandzhyan (Nauchnyi Mir, Moscow, 2005), pp. 6–54 [in Russian].

    Google Scholar 

  79. V. S. Vishnevskaya, N. A. Bogdanov, and G. E. Bondarenko, “Middle Jurassic-Early Cretaceous Boreal Radiolarians from the Okhotsk Sea Coast of Kamchatka,” Tikhookean. Geol. 17(3), 22–35 (1998).

    Google Scholar 

  80. G. A. Wagner and P. Van den Haute, Fission-Track Dating (Kluwer, Dordrecht, 1992).

    Google Scholar 

  81. P. R. A. Wells, “Pyroxene Thermometry in Simple and Complex Systems,” Contrib. Mineral. Petrol. 62, 127–139 (1977).

    Article  Google Scholar 

  82. M. Wilson, Igneous Petrogenesis (Unwin Hyman, London, 1989).

    Google Scholar 

  83. B. J. Wood and S. Banno, “Garnet-Orthopyroxene and Orthopyroxene-Clinopyroxene Relationships in Simple and Complex Systems,” Contrib. Mineral. Petrol. 42, 109–124 (1973).

    Article  Google Scholar 

  84. D. A. Wood, “The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

    Article  Google Scholar 

  85. V. P. Zinkevich, E. A. Konstantinovskaya, N. V. Tsukanov, A. V. Rikhter, V. S. Kamenetskii, R. Magakyan, A. V. Sobolev, S. F. Karpenko, S. A. Garanina, L. V. Danyushevskii, N. N. Kononkova, M. V. Portnyagin, G. M. Kolesov, and T. V. Romashova, Accretionary Tectonics of Eastern Kamchatka (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  86. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Plate Tectonics of the USSR Territory (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.V. Ledneva, A.A. Nosova, A.V. Soloviev, 2006, published in Petrologiya, 2006, Vol. 14, No. 2, pp. 168–202.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledneva, G.V., Nosova, A.A. & Soloviev, A.V. “Calc-alkaline” magmatism of the Omgon Range: Evidence for Early Paleogene extension in the western Kamchatka segment of the Eurasian continental margin. Petrology 14, 154–186 (2006). https://doi.org/10.1134/S0869591106020020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591106020020

Keywords

Navigation